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A B S T R A C T

Cooperation between humans and autonomy is a critical topic of unmanned aerial vehicle (UAV) control. How
to co-pilot the UAV with human operator to achieve optimal performance presents a significant challenge.
In this paper, we propose a novel data-driven optimal shared control method for UAV using the Koopman
operators to predict the nonlinear dynamics of the UAVs. An original shared control mechanism is established
to allocate the relationship between optimal and human control inputs. The model of the system is learned
from human maneuver data via the Koopman operator approach, and the optimal controller is approximated
online using reinforcement learning techniques. The Lyapunov theory analyzes the stability of the proposed
method. Compared with offline RL methods, the proposed method can learn the optimal controller online
without a precise UAV dynamics model from human maneuver data. The effectiveness of the proposed method
is demonstrated by numerical and Human-in-the-loop (HiTL) simulation.
1. Introduction

For the unmanned aerial vehicle (UAV) autonomous controller de-
sign, the precise dynamics model of the UAV are often necessitated.
Nonetheless, the exact mathematical dynamics of the UAV are challeng-
ing to quantify due to intricate nonlinearity and uncertainty. Methods
such as system identification [1,2], dynamic mode decomposition [3,4],
and Koopman operator approach [5,6] are investigated to identify the
unknown system dynamics. To obtain the drifted nonlinear dynam-
ics of UAV, adaptive system identification approach is explored to
facilitate the design of model-based controllers [7,8]. Dynamic mode
decomposition is a data-driven technique that linearizes the nonlinear
dynamics of the UAV and forecasts the system’s future state [9,10]. For
intricate nonlinear systems such as autonomous vehicles and power sys-
tems, the Koopman operator approach is employed to extend original
state-space into a high-dimensional Hilbert space, which predicts the
nonlinear dynamics [11,12]. The accuracy of measured system dynam-
ics significantly impacts the efficacy of autonomy control. To design
effective controllers for UAV, it is critical to estimate the unknown UAV
dynamics accurately.

The delegation of authority between human operators and au-
tonomous controllers is an urgent concern in the domain of human–
machine collaboration. Effectively and smoothly co-piloting UAV along-
side human operators to achieve optimal performance remains chal-
lenging. A substantial quantity of research has been conducted to
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improve the collaboration between human operators and autonomous
controllers, including switch control methods [13], shared control
methods [14,15], and hierarchical control methods [16–18]. However,
the effectiveness and smoothness of the shared control of UAV are
difficult to achieve. The direct shared control method is the most
common method to allocate the relationship between the autonomous
controller and human operator. The shared control parameter is set by
the human operator’s intention and the autonomy’s decision [19,20],
which is difficult to determine and may cause the UAV to be unstable
and unsafe due to the sudden switch of control authority. The indirect
shared control method is another method to allocate the relationship
between the autonomous controller and human operator, in which
the automation obtains the human operator’s intention and adjusts
the control input accordingly [21–23]. The input from humans is not
directly used to control the UAV, but to adjust the control input of the
autonomy. The hierarchical control method is a multi-level structure
containing high-level decision-making and low-level control [24,25]. In
the hierarchical control method, the human operator is always respon-
sible for high-level decision-making which provides a high-level goal,
while the autonomy is responsible for low-level control which generates
the control input to achieve the high-level goal [26–28]. Cooperative
control of complex nonlinear systems such as UAV demands a smooth
and efficient control mechanism to establish the interaction between
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the autonomous controller and the human operator.
Exploitation or integration of human operator experience presents

additional challenge for the shared control of UAV. The experience of
human operator collected from their maneuvers is a valuable asset for
the controller design. However, the utilization or assimilation of human
operator experience is hard to achieve. Methods such as reinforce-
ment learning (RL) [29–31], imitation learning [32,33], and inverse
reinforcement learning [34–36] are employed to derive the optimal
controller from the practical experiences of human operator. Inverse
learning algorithms are investigated to learn the inverse optimal con-
troller from the human operator’s experience [37,38]. The imitation
learning method learns a similar controller from the human operator’s
demonstration [39]. Approximate dynamic programming (ADP) is a
learning-based control method that approximates the optimal value and
policy functions from interactions in the RL manner [40–42]. Integral
reinforcement learning is studied to cooperatively learn to control UAV
with expert pilot’s demonstration data [43]. Other methods such as
model predictive control [44], and optimized backstepping control [45]
are investigated to exploit the human operator’s experience. Those
methods require a large amount of human operator experience to learn
optimal controller, which is inefficient and impractical for complex
tasks of highly nonlinear UAV systems. To exploit human operator
experience effectively and efficiently, data-driven control method is a
promising way for learning and co-piloting UAV with human operators
to achieve optimal performance.

Motivated by the aforementioned challenges of human-UAV coop-
erative control, a novel data-driven optimal shared control method
is proposed in this paper. The proposed method employs Koopman
operators to forecast the nonlinear dynamics of UAV based on the
maneuver data of human operator. The optimal controller is approxi-
mated online utilizing model-based RL techniques with forecasted UAV
dynamics, and an experience replay stack is used to archive historical
operation data. An efficient and smooth shared control mechanism is
established to allocate the relationship between the autonomous opti-
mal and human control inputs. Human-in-the-loop (HiTL) simulations
are conducted to evaluate the performance of the proposed method.
The contributions of this paper are summarized as follows:

1. An innovative data-driven optimal shared control method is pro-
posed for the cooperative control of UAV. With employing the
data-driven approaches of Koopman operators and RL control,
the proposed method could learn the optimal controller online
from human maneuver data without a precise UAV dynamics
model, which can copilot UAV with human operators while
achieving optimal performance. The proposed method does not
require precise UAV dynamics and large amount of maneuver
data for the optimal controller learning, compared with optimal
control methods [29,30,34,38,45,46].

2. We propose a smooth shared control mechanism to allocate
the relationship between autonomous optimal control input and
human control input, which judges the cooperative intention of
human operators and integrates both human and autonomous
control inputs according to an adaptive parameter. This shared
control mechanism could achieve better and smoother perfor-
mance compared with authority allocation mechanisms in [6,
47].

3. The optimal controller is approximated online utilizing RL ap-
proach that exploits human operator experience, while the
model of the UAV system is learned from human maneuver data
via the Koopman approach. Our method is able to learn optimal
controller online efficiently using data from human maneuvers,
in contrast to offline training methods [12,13]. The performance
of the controller is evaluated by HiTL simulations.

The rest of this paper is organized as follows. In Section 2, we
present the UAV attitude dynamics model and the Koopman operator.
2 
Fig. 1. The configuration of the UAV.

In Section 3, the problem of optimal shared control of UAV is formu-
lated. Section 4 provides the main result of data-driven optimal shared
control of UAV. In Section 5, we provide the UAV simulation of the
proposed method. Finally, Section 6 concludes the paper.

Notation: The following notation will be used throughout the pa-
per: , 𝑛, 𝑚×𝑛 denote the real number set, 𝑛-dimensional real space,
and 𝑚 × 𝑛 real matrix, respectively, ∇ denotes the gradient operator, †

denotes the Moore–Penrose pseudo inverse, ‖ ⋅ ‖ denotes the Euclidean
norm.

2. Preliminaries and system description

2.1. Attitude dynamics model of UAV

The classical configuration of the body frame and North-East-Down
(NED) frame of UAV is shown in Fig. 1. The attitude dynamics model
of UAV could be formulated as an Euler–Lagrange equation in the form
of:

𝑀�̈� = −𝐶(𝛷 , �̇�)�̇� +  +𝑊 (𝛷 , �̇�) (1)

where 𝑀 = diag ([𝐽𝜙, 𝐽𝜃 , 𝐽𝜓
])

∈ 3×3 denotes the inertial matrix.
𝛷 = [𝜙, 𝜃 , 𝜓]⊤ ∈ 3×1 indicates the angle collection of roll, pitch, and
yaw Euler angles, which are bounded by 𝜙 ∈

[

− 𝜋
2 ,

𝜋
2

]

, 𝜃 ∈
[

− 𝜋
2 ,

𝜋
2

]

, 𝜓 ∈
[−𝜋 , 𝜋]. 𝐶(𝛷 , �̇�) ∶ 6×1 → 3×3 denotes the coupled Coriolis term.  =
[

𝛾𝜙, 𝛾𝜃 , 𝛾𝜓
]⊤ ∈ 3×1 is the input torque generated by 𝛾𝜙 = 𝛼𝑙𝛼𝑤𝑢𝜙, 𝛾𝜃 =

𝛼𝑙𝛼𝑤𝑢𝜃 , and 𝛾𝜓 = 𝛼𝛾𝑢𝜓 , where 𝛼𝑙 is the distance from the center of UAV
mass to each rotor, 𝛼𝑤 is the thrust factor of the UAV, and 𝛼𝛾 is the drag
factor of the UAV, 𝑢𝜙, 𝑢𝜃 , 𝑢𝜓 are the control inputs generated by 𝑢𝜙 =
𝜔2
1−𝜔

2
3, 𝑢𝜃 = 𝜔2

2−𝜔
2
4 and 𝑢𝜓 = 𝜔2

1+𝜔
2
3−𝜔

2
2−𝜔

2
4, where 𝜔𝑗 (𝑗 = 1,… , 4) is

the speed of UAV’s 𝑗th rotor. 𝑊 (𝛷 , �̇�) = [

𝑤1, 𝑤2, 𝑤3
]⊤ ∶ 6×1 → 3×1 is

the uncertain disturbance which vanishes when the UAV is in a stable
state. Define 𝐵𝛾 = 𝑀−1 × diag ([𝛼𝑙𝛼𝑤, 𝛼𝑙𝛼𝑤, 𝛼𝛾

])

∈ 3×3 as the gain
matrix of control input. The Lagrange-formed attitude dynamics model
(1) could be reformulated as:

�̈� = −𝑀−1(𝐶(𝛷 , �̇�)�̇�) + 𝐵𝛾𝑈 +𝛺(𝛷 , �̇�) (2)

where 𝑢 =
[

𝑢𝜙, 𝑢𝜃 , 𝑢𝜓
]⊤ is the overall control input of the UAV, 𝛺(𝛷 , �̇�)

is the transformed uncertain disturbance derived by 𝛺(𝛷 , �̇�) = 𝑀−1 ×
𝑊 (𝛷 , �̇�). Define 𝑥 =

[

𝛷⊤, �̇�⊤]⊤ ∈ 6×1 as the system state of the
dynamics system (2). Then the attitude dynamics model (2) could be
written in a general nonlinear affine-input form:

̇ = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 + 𝑑(𝑥) (3)

where the drift dynamics matrix 𝑓 (𝑥), control input matrix 𝑔(𝑥) and
uncertain disturbance matrix 𝑑(𝑥) are defined as

𝑓 =
[

03×3 𝐼3×3
03×3 −𝑀−1𝐶

]

𝑥, 𝑔 =
[

03×3
𝐵𝛾

]

, 𝑑 =
[

03×1
𝛺

]

.

Consider the following dynamics of desired trajectory 𝑥𝑑 =
[

𝛷⊤, �̇�⊤]⊤ ∈ 6×1 as �̇� = 𝑓 (𝑥 ), where 𝑓 ∶ 6×1 → 6×1 is the drift
𝑑 𝑑 𝑑 𝑑 𝑑 𝑑
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dynamics matrix of the desired trajectory. Define the tracking error of
he desired trajectory as 𝑒 = 𝑥 − 𝑥𝑑 ∈ 6×1. Subtracting the nonlinear-
ormed system dynamics (3) and the dynamics of the desired trajectory,
he following tracking error dynamics could be obtained:

̇ = �̇� − �̇�𝑑 =
[

𝑓 (𝑥) − 𝑓𝑑 (𝑥𝑑 )
]

+ 𝑔(𝑥)𝑢 + 𝑑(𝑥) (4)

Accordingly, the nonlinear-formed system dynamics (3), the track-
ng error dynamics (4), and the dynamics of the desired trajectory could

be augmented to the following dynamics:
̇ = 𝐹 (𝑋) + 𝐺(𝑋)𝑈 +𝐷(𝑋) (5)

where 𝑋 = [𝑒⊤, 𝑥⊤𝑑 ]⊤ ∈ 12×1 is the augmented state, 𝑈 =
[

𝑢⊤, 01×3
]⊤ ∈

6×1 is the augmented control input, and the augmented dynamics
atrices are defined as:

𝐹 (𝑋) =
[

𝑓 (𝑒 + 𝑥𝑑 ) − 𝑓𝑑 (𝑥𝑑 )
𝑓𝑑 (𝑥𝑑 )

]

𝐺(𝑋) =
[

𝑔(𝑒 + 𝑥𝑑 ) 06×3
06×3 06×3

]

, 𝐷(𝑋) =
[

𝑑(𝑒 + 𝑥𝑑 )
06×1

]

To facilitate the succeeding analysis and controller design with the
ugmented dynamics (5), the following assumption is made for the UAV

dynamics model.

Assumption 1. The following conditions are assumed to be satisfied
for the augment dynamics (5):

1. The drift dynamics matrix 𝑓 (𝑥) and control input matrix 𝑔(𝑥) are
Lipschitz continuous with respect to 𝑥.

2. The uncertain disturbance matrix 𝐷(𝑋) is bounded by a known
function 𝐿𝐷(𝑋), i.e., ‖𝐷(𝑋)‖ ≤ 𝐿𝐷(𝑋) with 𝐿𝐷(0) = 0.

It can be seen that the augmented dynamics (5) is a complex
nonlinear affine-input system with uncertain disturbances. To copilot
the UAVs with human operators to achieve optimal performance, it is
essential to design an optimal controller to track the desired trajectory.
However, the optimal controller is difficult to obtain due to the complex
nonlinear dynamics and uncertain disturbances of the UAVs. In the fol-
lowing subsection, we will introduce the Koopman operator approach
to predict the nonlinear dynamics of the UAVs.

2.2. Koopman operator

For an uncontrolled nonlinear dynamic system evolving on the
state-space 𝑛, the state-space representation of the system is given
by:

𝑥𝑡+1 =  (𝑥𝑡) (6)

where  ∶ 𝑛 → 𝑛 is the nonlinear drift dynamics matrix of the
system. To predict the future state of the system, the Koopman operator
approach is utilized to predict the nonlinear dynamics of the UAVs,
which extends the state space to a high-dimensional Hilbert space. The

oopman operator  ∶  →  is defined as:

(𝛹 )
(

𝑥𝑡+1
)

= 𝛹
(


(

𝑥𝑡
))

(7)

where 𝛹 ∶ 𝑛 →  is the transfer function, which transforms the
original state-space to the Hilbert space of Koopman operator. The
above Koopman operator is defined under the setting of an uncontrolled
onlinear dynamics system. However, for the controlled nonlinear
ynamical system, the Koopman operator should be extended to the
ontrolled setting. Define the extended system state as 𝜒𝑡 =

[

𝑥⊤𝑡 , 𝑢⊤𝑡
]⊤,

hen the extended system dynamics could be written as:

𝜒𝑡+1 =  (𝜒𝑡) ∶=
[

 (𝑥, 𝑢(0))
𝑢

]

(8)

where  is the left shift operator, satisfies (𝑢)𝑖 = 𝑢𝑖+1, 𝑢𝑖 indicates
he 𝑖th sequential element of control inputs. The Koopman operator
3 
 ∶  →  for the extended system dynamics could be redefined
as:

(𝛩)(𝜒) = 𝛩( (𝜒)) (9)

where 𝛩 ∶ 𝑛+𝓁 →  is the transfer function, which transforms the
xtended state-space to the Hilbert space of Koopman operator. The
bove Koopman operator is defined under the setting of a controlled
onlinear dynamical system. This Koopman operator approach is uti-
ized to predict the nonlinear dynamics of the UAVs, which extends
he state space to a high-dimensional Hilbert space. In the next section,
e will introduce the optimal shared control of UAVs based on the
oopman operator approach.

3. Problem formulation: Optimal shared control of UAV

3.1. Extended dynamic mode decomposition

Precise mathematical dynamics of the UAVs are difficult to obtain
due to the complex nonlinear dynamics and uncertain disturbances.
To predict the nonlinear dynamics of the UAVs, the extended dynamic
mode decomposition (EDMD) algorithm is utilized to approximate the
Koopman operator . EDMD is a data-driven method that approximate
the Koopman operator in the following form:

𝛩
(

𝜒𝑡+1
)

= ⊤𝛩
(

𝜒𝑡
)

+ 𝜖
(

𝜒𝑡
)

(10)

where 𝛩 ∶ 𝑛+𝓁 →  is the transfer function defined in the last section,
𝜖
(

𝜒𝑡
)

is the approximation error of the Koopman operator. Collect the
data

(

𝜒𝑗 , 𝜒𝑗+1
)

, 𝑗 = 1,… , 𝑁 from the system dynamics 𝜒𝑗+1 = 
(

𝜒𝑗
)

,
To approximate the Koopman operator , we seek matrix 𝐾 which
minimizes the following objective function:

𝐸 =
𝑁
∑

𝑗=1

‖

‖

‖

𝜖
(

𝜒𝑗
)

‖

‖

‖

2
=

𝑁
∑

𝑗=1

‖

‖

‖

𝛩
(

𝜒𝑗+1
)

−𝐾⊤𝛩
(

𝜒𝑗
)

‖

‖

‖

2
(11)

where 𝛩(𝜒𝑗 ) =
[

𝛩1(𝜒𝑗 ),… , 𝛩𝑁𝛩 (𝜒𝑗 )
]⊤

is a vector of basis transfer func-
tions 𝛩𝑖 ∶ 𝑛+𝓁 → , 𝑖 = 1,… , 𝑁𝛩. Given a set of data collected from
the system dynamics, 𝑋 =

[

𝛩(𝜒1),… , 𝛩(𝜒(𝑁−1))
]

is the transformed

state data, 𝑌 =
[

𝛩(𝜒2),… , 𝛩(𝜒𝑁
)
]

denotes the transformed output

state data, 𝑈 =
[

𝛩(𝑢1),… , 𝛩(𝑢𝑁
)
]

indicates the transformed control
input data, in which relation 𝜒𝑗+1 = 

(

𝜒𝑖, 𝑢𝑖
)

is satisfied. With the
collected data set 𝑋, 𝑌 and 𝑈, Linearized system dynamics matrix
𝐴 ∈ 𝑛×𝑛 and 𝐵 ∈ 𝑛×𝑚 could be obtained as the solution to the
minimization of (11), which is given by:

[𝐴, 𝐵] = 𝑌
[

𝑋, 𝑈
]† (12)

where † is the operator of Moore–Penrose pseudo inverse. With the lin-
earized system dynamics matrix 𝐴 and 𝐵, the estimated drift dynamics
matrix and estimated control input matrix for the augmented system
(5) could be obtained as:

𝐹 =
[

𝐴× (𝑒 + 𝑥𝑑 ) − 𝑓𝑑 (𝑥𝑑 )
𝑓𝑑 (𝑥𝑑 )

]

, �̂�=
[

𝐵 06×3
06×3 06×3

]

(13)

The nonlinear dynamics of the UAVs are predicted by the Koopman
operator approach. To achieve the optimal shared control of UAVs, the
ptimal control problem is formulated in the next subsection.

3.2. Formulation of optimal control

In the last subsection, the system dynamics is obtained using Koop-
an operator and EDMD algorithm. To design the optimal shared

controller for the UAV, the problem of optimal control should be
formulated. First, the following quadratic cost function can be
defined:

𝐽 (𝑋 , 𝑈 ) =
∞
(𝑟(𝑋(𝜏), 𝑈 (𝜏))) 𝑑 𝜏 (14)
∫𝑡𝑜
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Fig. 2. The mechanism of shared control.
where the saturated control input 𝑈 (𝑡) satisfies −𝜇 ≤ 𝑈 (𝑡) ≤ 𝜇, in which
𝜇 is the symmetric constraint for the control input, which is set as
the maximum control input of the UAV, and the instantaneous reward
function 𝑟(𝑋(𝜏), 𝑈 (𝜏)) is given as:

𝑟(𝑋 , 𝑈 ) = 𝑋⊤𝑄𝑋 + 𝛯(𝑈 ) (15)

where 𝑄 ∈ R𝑛×𝑛 is positive definite state penalty matrices for the state
𝑋. 𝛯(𝑈 ) is the penalty of control input:

𝛯(𝑈 ) = 2𝑅∫

𝑈

0

(

𝜇 t anh−1
(

𝜁𝑈
𝜇

))

d𝜁𝑈 . (16)

where 𝑅 ∈ R𝑛×𝑛 denotes the positive definite control input penalty
matrix. 𝜁𝑈 is an integral variable. To develop the optimal controller
for the UAV, it is essential to evaluate the optimal value function 𝐽 ∗(𝑋)
and the optimal control input 𝑈∗(𝑋). The optimal value function 𝐽 ∗(𝑋)
is given as:

𝐽 ∗(𝑋) = min
𝑈 (𝜏)∈𝛺𝑈 ∫

∞

𝑡
(𝑟(𝑋(𝜏), 𝑈 (𝜏))) 𝑑 𝜏 (17)

where 𝛺𝑈 ∈ R𝑚×1 is the admissible set of control input. To obtain the
optimal value function (17), we introduce the Hamilton function for
the optimal control problem:

𝐻(𝑋 , 𝑈 ,∇𝐽 ∗) = 𝑋⊤𝑄𝑋 + 𝛯(𝑈 ) + (∇𝐽 ∗)⊤(𝐹 + 𝐺 𝑈 +𝐷) (18)

where ∇𝐽 ∗ = 𝜕 𝐽∗
𝜕 𝑋 is the gradient of optimal value function. Following

the extreme condition of the value function (17) and the Hamilton
function (18), the optimal control input could be derived as:

𝑈∗(𝑋) = −𝜇 t anh
(

𝑅−1𝐺⊤

2𝜇
(

∇𝐽 ∗(𝑋)
)⊤

)

(19)

Combining the optimal control input (19) with the Hamilton func-
tion (18), the HJB equation is obtained as:

0 = 𝑋⊤𝑄𝑋 + 𝛯(𝑈∗) + (∇𝐽 ∗)⊤(𝐹 + 𝐺 𝑈∗) (20)

The optimal value function (17) and the corresponding saturated
optimal control input (19) could be derived by solving the HJB equa-
tion (20). Now the problem of optimal control of the UAV is formulated.
However, solving the HJB equation (20) is still a complex and challeng-
ing problem due to its nonlinearity and high dimensionality. The next
section will introduce a novel shared control mechanism that collects
and allocates control inputs from the human operator and the optimal
controller of autonomy.

Remark 1. Control inputs of UAV systems are inherently constrained
by physical limitations in practical applications. These constraints are
naturally incorporated into the cost function (17) and penalty function
(19) through well-defined saturation bounds. The choice of hyperbolic
tangent function 𝑡𝑎𝑛ℎ in (19) is motivated by its smoothness and natural
boundedness properties as discussed in [2]. Such bounds effectively
prevent control saturation while ensuring system stability. The spe-
cific value of the saturation bound 𝜇 is determined directly from the
4 
physical constraints of the UAV system. Both human and autonomy
control inputs are subject to identical constraints in the shared control
mechanism, maintaining consistency with the constraints in the optimal
control formulation.

3.3. Shared control allocation

In this subsection, to achieve the closed-loop optimal shared control
of UAVs, a novel shared control mechanism is established, which
allocates the relationship between optimal control input and human
inputs. Given the human control input 𝑈ℎ and the control input 𝑈∗

produced by the optimal controller of autonomy, the shared control
input  is defined as:

 = 𝑈∗ + 𝛼 𝑈ℎ (21)

where 𝛼 ∈ [0, 1] is the shared control parameter.
To achieve the optimal shared control of the UAV, methods such

as Maxwell’s Demon Algorithm (MDA) from [6,47] are studied to set
parameter 𝛼 by judging if the human control input is in the same
direction as the optimal control input. However, the MDA is a method
similar to the switch control method, which is not smooth and may
cause the UAV system to be unstable. In this paper, a novel shared
control mechanism is proposed to allocate the relationship between the
optimal control input and human control input. The ratio of the optimal
control input and human control input is defined as:

𝛼 =

⎧

⎪

⎨

⎪

⎩

0, if 𝜂 ≥ 𝛽1
1, if 𝜂 ≤ 𝛽2
𝜂−𝛽1
𝛽2−𝛽1

, otherwise
(22)

where 𝜂 is the angle between the vector of optimal control input and
the vector of human control input. 𝛽1 and 𝛽2 are the threshold values.
In this paper, we choose 𝛽1 = 2𝜋∕3 and 𝛽2 = 𝜋∕2. The shared control
mechanism is illustrated in Fig. 2, where the blue slash-dot vector is
the optimal control input of the autonomy, the green dotted vector
indicates the human control input, when angle 𝜂 is greater than 𝛽1,
the shared control parameter 𝛼 is set to 0, the UAVs are controlled
by the autonomy. When angle 𝜂 is less than 𝛽2, the shared control
parameter 𝛼 is set to 1, the UAVs are controlled by both the autonomy
and the human operator fully. When angle 𝜂 is between 𝛽1 and 𝛽2,
the shared control parameter 𝛼 is set to the ratio of angle 𝜂 to the
threshold values 𝛽1 and 𝛽2. Compared with MDA methods in [6,47], the
proposed shared control mechanism is able to allocate the relationship
of control input smoothly and effectively, which judges the intention
of human operator and autonomy. The smoothness of the control input
is guaranteed by the setting of intermediate transition zones. To learn
from the human operator’s maneuver data and achieve optimal shared
control of the UAV, the optimal controller is approximated by the actor-
critic algorithm using historical pilot operation data in the next section.
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Remark 2. The shared control mechanism ensures optimality through
blending of optimal and human control inputs. When 𝛼 = 0, only the
optimal control input is applied, achieving global optimality. When 𝛼 =
1, the system is driven by human control input alone, which is generally
suboptimal. For 0 < 𝛼 < 1, the blended shared control provides
suboptimal performance. However, when 𝛼 = 1 and 𝜂 = 0, meaning
the human input aligns with the optimal input direction, the shared
control achieves optimality despite full human control authority.

4. Main results: Data-driven optimal shared control

In this section, the design of the actor-critic is presented to solve the
optimal shared control problem of the UAVs. First, the optimal value
function and the optimal control policy are reconstructed using the
actor-critic algorithm. With the reconstructed optimal value function
and control policy, the bellman error is established. By minimizing the
bellman error, the actor-critic neural networks (NNs) are trained to
obtain the optimal value function and the optimal control policy.

4.1. Approximation of value function via actor-critic

For the approximation of the optimal value function, a structure
of actor-critic NNs is developed. The optimal value function is recon-
structed by:

𝐽 ∗(𝑋) = 𝑊 ⊤
𝑐 𝜑𝑐 (𝑋) + 𝜀𝑐 (𝑋) (23)

where 𝑊𝑐 ∈ R𝑛𝜑𝑐 ×1 is the weights of critic NN, 𝜀𝑐 and 𝜀𝑎 are the con-
struction errors of the actor-critic NNs. To obtain the optimal control
input, the actor NNs are utilized to approximate the optimal control
policy:

𝑈∗(𝑋) = −𝜇 t anh (𝑅−1�̂�⊤
(

∇𝜑⊤𝑎 (𝑋)𝑊𝑎 + ∇𝜀⊤𝑎
)

∕(2𝜇)
)

(24)

where 𝑊𝑎 ∈ R𝑛𝜑𝑎×1 are the weights of the actor NNs. In the practice, the
ideal weights 𝑊𝑐 and 𝑊𝑎 are unknown, estimated weights are utilized
to approximate the optimal value functions and the control inputs:

𝐽 (𝑋) =�̂� ⊤
𝑐 𝜑𝑐 (𝑋) (25)

�̂� (𝑋) = − 𝜇 t anh (𝑅−1�̂�⊤�̂� ⊤
𝑎 𝜑𝑎(𝑋)∕(2𝜇)

)

(26)

where �̂�𝑐 ∈ R𝑛𝜑×1 are the estimated weights of the critic NN. �̂�𝑎 are
the estimated weights of the actor NN.

According to the proposed shared control mechanism (21) in the last
section, the shared control input is obtained by blending the optimal
control input and human control input:

̂ = �̂� + 𝛼 𝑈ℎ (27)

By inserting the obtained shard control input into the Hamilton
function, the shared control Bellman error is obtained:

𝛿(𝑋 , �̂�𝑐 , �̂� , 𝑈ℎ) =∇𝐽⊤
(

𝐹 + �̂�̂ +𝐷
)

+ 𝑟(𝑋 , ̂ )

=�̂� ⊤
𝑐 ∇𝜑𝑐

(

𝐹 + �̂�(�̂� + 𝛼 𝑈ℎ) +𝐷
)

+ 𝑋⊤𝑄𝑋 + 𝛯(�̂� + 𝛼 𝑈ℎ) (28)

where 𝛿 is the shared control Bellman error. The shared control Bellman
error is utilized to train actor-critic NNs to approximate the optimal
value functions and control inputs.

4.2. Online value function approximation

In this subsection, weights of actor-critic NNs are updated on-
line by minimizing the Bellman error. The historical stack data set
{̂ (𝑡), 𝛿(𝑡), {̂ 𝑗 (𝑡), 𝛿𝑗 (𝑡)}𝑁𝑗=1} is collected without extrapolation but
stored as a stack, where {̂ 𝑗 (𝑡), 𝛿𝑗 (𝑡)} is the 𝑗th historical stored data
collection. The weights of actor-critic NNs are learned by minimizing
a defined squared loss function 𝐸 = 𝛿⊤𝛿 +

∑𝑁
𝑘=1 𝛿

𝑘 ⊤𝛿𝑘, motivated
by literature [48]. Accordingly, a concurrent learning-based gradient
5 
Fig. 3. The proposed data-driven optimal shared control algorithm structure.

Algorithm 1 Data-driven Optimal Shared Control of UAVs

1: Initialize actor-critic weights �̂�𝑐 , �̂�𝑎, learning rates 𝑘𝑐 𝑖 (𝑖 = 1, 2), 𝑘𝑎,
and projection matrices 𝐹 .

2: Initialize experience replay stack { , 𝛿 , { 𝑗 , 𝛿𝑗}𝑁𝑗=1} and Koopman
data set {𝑌, 𝑋, 𝑈}.

3: while 𝑡 < 𝑇𝑒𝑛𝑑 do
4: Collect human control input 𝑈ℎ and system state 𝑋.
5: if UAV model is unknown then
6: Compute transfer function 𝛩([𝑋⊤, 𝑈⊤

ℎ ]
⊤).

7: Update Koopman data set with 𝛩.
8: Estimate dynamics matrices 𝐴, 𝐵 using (12).
9: Calculate 𝐹 and �̂� using (13).

10: end if
11: Estimate optimal control �̂� (𝑋) using (26).
12: Compute and apply shared control input  using (27).
13: Calculate Bellman error 𝛿(𝑋 , �̂�𝑐 , �̂� , 𝑈ℎ) using (28).
14: Update experience replay stack with  and 𝛿.
15: Update actor-critic weights �̂�𝑐 and �̂�𝑎 using (29) and (30).
16: end while

descent update law is utilized to update the weights of the critic NN:

̇̂𝑊𝑐 = − 𝑘𝑐1𝛿 𝜎
(

𝜎⊤𝜎 + 1)2
−
𝑘𝑐2
𝑁

𝑁
∑

𝑘=1

𝛿𝑘𝜎𝑘
(

(𝜎𝑘)⊤𝜎𝑘 + 1)2
(29)

where 𝑘𝑐 𝑖 > 0, 𝑖 = 1, 2 are the learning rates of critic NN. The regression
vectors 𝜎 = ∇𝜑⊤𝑐 (𝑋)(𝐹 +𝐺̂ +𝐷), 𝜎𝑘 = ∇𝜑⊤𝑐 (𝑋𝑘)(𝐹 +𝐺̂ 𝑘 +𝐷), where
𝑋𝑘 is the 𝑘th historical data sample. For the actor NN, the weights are
updated by a gradient projection update law:
̇̂𝑊𝑎 = Proj

(

−𝑘𝑎𝐹𝑎
(

�̂�𝑎 − �̂�𝑐
))

(30)

where 𝑘𝑎 > 0 is the learning rates of actor NN. 𝐹𝑎 ∈ R𝑛𝜑×𝑛𝜑 is positive
definite matrices for the updating of actor NN. Proj(⋅) is a projection
operator to ensure the actor NN weights are bounded. Then the online
learning of the optimal value function and control input are achieved
by actor-critic NNs. The detailed algorithm is shown in Algorithm 1.

The detailed architecture of the Koopman operator-based RL algo-
rithm is shown in Fig. 3. The human control input is collected from
the human operator and stored in the experience replay stack. The
experience replay stack contains the historical data of the human con-
trol input, the optimal control input, the state, and the Bellman error.
These historical data are utilized to predict the dynamics of the UAVs
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and train the actor-critic NNs. The online trained actor-critic NNs could
approximate the optimal value functions and the control inputs. Then
the shared control input is obtained by the shared control mechanism
(21), which blends the optimal control input and the human control
input. The shared control input is applied to the UAVs to achieve
optimal shared control. Next, the stability analysis of the closed-loop
system is presented.

4.3. Stability analysis of the closed-loop system

In this subsection, with the help of the Lyapunov stability theory,
the closed-loop system states and the actor-critic NN estimated errors
are proved to be ultimate uniform bounded (UUB) under the proposed
data-driven optimal shared control scheme. First, three assumptions are
given here for the proof.

Assumption 2. The following assumptions are given for the stability
analysis:

1. On a tight set 𝑋 ∈ 𝜒 ∈ R𝑛, both 𝐹 (𝑋) and 𝐺(𝑋) are Lipschitz
continuous with 𝐹 (0) = 0, and 𝐺(𝑋) satisfied bounded condition
‖𝐺(𝑋)‖ ≤ 𝐺𝐻 for all 𝑋 ∈ 𝜒 .

2. Cost matrix 𝑄 and 𝑅 are bounded, such that 𝜆𝑄 ≤ ‖𝑄‖ ≤ �̄�𝑄,
𝜆𝑅 ≤ ‖𝑅‖ ≤ �̄�𝑅, where constants 𝜆𝑄, 𝜆𝑅 ≥ 0 and �̄�𝑞 , �̄�𝑅 > 0.

Assumption 3. Assuming that the following parameters and operators
are bounded: ‖�̂�𝑐‖ ≤ 𝑊𝐻 𝑖, ‖𝜎(𝑋)‖ ≤ 𝜎𝐻 𝑖, ‖∇𝜎(𝑋)‖ ≤ 𝜎𝐷 ,𝐻 𝑖, ‖𝜑(𝑋)‖ ≤
𝜑𝐻 𝑖, ‖∇𝜑(𝑋)‖ ≤ 𝜑𝐷 ,𝐻 𝑖, ‖𝜀(𝑋)‖ ≤ 𝜀𝐻 𝑖, ‖∇𝜀(𝑋)‖ ≤ 𝜀𝐷 ,𝐻 𝑖,

Assumption 4 (Persistent Excitation Condition [49,50]). Assuming that
he online collected and extrapolated data set for the weights update
aw satisfies the following excitation condition:

𝜗1𝐼 ⩽ ∫

𝑡+𝑇

𝑡

(

𝜎(𝜏)𝜎(𝜏)⊤∕𝜌(𝜏)
)

d𝜏 ,

𝜗2𝐼 ⩽ inf
𝑡∈𝐑𝑡≥𝑡0

( 𝑁
∑

𝑘=1
𝜎𝑘(𝑡)𝜎𝑘(𝑡)⊤∕𝜌𝑘(𝑡)

)

∕𝑁 ,

𝜗3𝐼 ⩽ ∫

𝑡+𝑇

𝑡

(

1
𝑁

𝑁
∑

𝑘=1
𝜎𝑘(𝜏)𝜎𝑘(𝜏)⊤∕𝜌𝑘(𝜏)

)

d𝜏

where 𝜌 =
(

𝜎⊤𝜎 + 1)2, 𝜌𝑘 =
(

𝜎𝑘 ⊤𝜎𝑘 + 1)2, and at least one of the
on-negative constants 𝜗1, 𝜗2, 𝜗3 is positive.

Based on the design of input (26), it could be obtained that:
‖

‖

‖

𝑈∗(𝑋) − �̂� (𝑋)‖‖
‖

2
≤ 𝛴�̃� ⊤

𝑎 �̃�𝑎 +𝛱𝑢 (31)

where 𝛴 is a upper bound related with 𝜑𝐻 , 𝜑𝐷 ,𝐻 , 𝜎𝐻 and 𝜎𝐷 ,𝐻 , 𝛱𝑢
is a upper bound related to 𝜀𝐷 ,𝐻 . The Hamiltonian error 𝛿, or Bellman
error, is abbreviated in the following form:

𝛿 = − 𝜎⊤�̃�𝑐 +
1
4
�̃�𝑎𝐺𝜎�̃�𝑎 + 𝛥(𝑋) + 𝜉𝐻 , (32)

𝛿𝑘 = − (𝜎𝑘)⊤�̃�𝑐 +
1
4
�̃�𝑎𝐺

𝑘
𝜎�̃�𝑎 + 𝛥𝑘(𝑋), (33)

where the 𝐺𝜎 = ∇𝜑⊤𝑎𝐺𝑇𝑅−1𝐺⊤∇𝜑⊤𝑎 , 𝐺𝑘𝜎 = 𝐺𝜎 (𝑋𝐾 ), and 𝛥, 𝛥𝑘 ∶ R𝑛 →
R are uniformly bounded on 𝜒 , ‖𝛥‖ and ‖

‖

𝛥𝑘‖
‖

decrease as ‖∇𝜀‖ and
‖∇𝑊 ‖ decrease. The stability analysis of closed-loop system state and
etwork weight estimation errors is given in the following theoretical
esult.

Theorem 1. Considering the augmented system dynamics (5) and the
proposed data-driven optimal shared control scheme, Assumptions 2, 3 and
4 are satisfied, The actor-critic NNs are updated by the adaptive update law
29) and (30). The control input is estimated by (26). Then the closed-loop

system states 𝑋 and weights errors [�̃� ⊤
𝑐 , �̃�

⊤
𝑎 ]⊤ will be UUB provided that:

‖‖ ≥
(

𝛶r es∕𝜆min()
)
1
2 (34)

[ ⊤ ⊤ ⊤]⊤
where  = 𝑋 , �̃�𝑐 , �̃�𝑎 .
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Table 1
Parameters of the UAV system and the update law.
Initial parameters 𝑋0 = 0.03[13 ,03], 𝑊𝑐0 = 0.15(19 + 𝑟𝑎𝑛𝑑(9))

𝑊𝑎0 = 0.15(19 + 𝑟𝑎𝑛𝑑(9)), 𝜇sat = 0.5
UAV parameters 𝛾𝜙 = 0.0211 kg m2 , 𝛾𝜃 = 0.0219 kg m2

𝛾𝜓 = 0.0366 kg m2 , 𝐵𝛾 = diag ([41, 41, 110])
Update parameters 𝑅 = 𝐼2 , 𝑄 = 𝐼6 , 𝑘𝑐1 = 2, 𝑘𝑐2 = 1

𝑘𝑎 = 1, 𝐹𝑎 = 𝐼6

Proof. Based on the Lyapunov stability theory, we construct the
following Lyapunov function:  () = 𝐽 ∗ + 1

2 �̃�
⊤
𝑐 �̃�𝑐 + 1

2 �̃�
⊤
𝑎 �̃�𝑎. To

acilitate the analysis, the 𝑖th element of shared control input ̂ can
e rewritten in a compact form: ̂ (𝑖) = �̂� (𝑖) + 𝛼𝑖𝑈ℎ(𝑖) ≈ 𝑖�̂� , where
𝑖 ∈ [1, 2] is a coefficient associated with the shared control parameter
𝑖. Subsequently, the shared control input can be expressed as: ̂ ≈
�̂� with diagonal matrix  = diag

(

1,2,… ,𝑚
)

containing the
oefficients 𝑖. Taking the time derivative of the Lyapunov function
, we obtain:

̇ = ∇𝐽 ∗ (𝐹 + 𝐺𝑈∗ +𝐷
)

+ �̃� ⊤
𝑐

̇̂𝑊 ⊤
𝑐 + �̃� ⊤

𝑎
̇̂𝑊 ⊤
𝑎 (35)

Substituting the (∇𝐽 ∗)⊤ 𝐹 (𝑋) term from (32) and (33) into (35), and
employing the Bellman errors from (32) and (33), the time derivative
of Lyapunov function can be expressed as:

̇ = −𝑋⊤𝑄𝑋 − 𝛯(𝑈∗) + �̃� ⊤
𝑎
(

−𝑘𝑎𝐹𝑎
(

�̂�𝑎 − �̂�𝑐
))

− �̃� ⊤
𝑐

(

−𝑘𝑐1
𝜎
𝜌

(

−𝜎⊤�̃�𝑐 +
1
4
�̃� ⊤
𝑎 𝐺𝜎�̃�𝑎 + 𝛥

)

)

− �̃� ⊤
𝑐

(

−
𝑘𝑐2
𝑁

𝑁
∑

𝑘=1

𝜎𝑘

𝜌𝑘
1
4
�̃� ⊤
𝑎 𝐺

𝑘
𝜎�̃�𝑎

)

− �̃� ⊤
𝑐

(

−
𝑘𝑐2
𝑁

𝑁
∑

𝑘=1

𝜎𝑘

𝜌𝑘
(

−(𝜎𝑘)⊤�̃�𝑎 + 𝛥𝑘
)

)

(36)

Substitute inequality (31), then employing Young’s inequality and
Assumptions 2–4, the derivative can be rewritten as:

̇ ≤ −⊤ + 𝛶r es
where  =

[

𝑚1 0 0; 0 𝑚2 0; 0 𝑚3 𝑚4
]

is a positive definite matrix, 𝑚1 =

𝑄, 𝑚2 = 1
2𝑘𝑐1𝜎 𝜎T + 1

2𝑘𝑐2𝜗2𝐼, 𝑚3 = −𝐹𝑎𝐼, 𝑚4 = 𝐹𝑎𝐼 − �̄�𝑅𝛴 𝐼, and
r es is a residual defined as:

𝛶r es = 1
2
𝑘𝑐1

(1
4
�̃� ⊤
𝑎 𝐺𝜎�̃�𝑎 + 𝜉𝐻 + 𝛥

)2
+ �̄�𝑅𝛱𝑢

+ 1
2
𝑘𝑐2

( 1
4
�̃� ⊤
𝑎 𝐺𝜎 ,𝑘�̃�𝑎 + 𝛥𝑘

)2

Therefore, with the selection of an appropriate positive definite matrix
, which could be satisfied with proper selection of 𝑘𝑐 𝑖, 𝑘𝑎, 𝐹𝑎, and
the initial weights of the actor-critic NNs, the closed-loop system state
𝑋 and the neural network weight estimation errors

[

�̃� ⊤
𝑐 , �̃�

⊤
𝑎
]⊤ are

uaranteed to be ultimately uniformly bounded when condition (34)
is satisfied. This completes the stability proof. □

5. Simulation verification

5.1. Example 1: numerical simulations

Experimental setup
The system dynamics of the UAV is set by dynamics (5). To com-

pare and evaluate the performance of proposed method and meth-
ods from [6,30], a numerical simulation of UAV shared control is
onducted. To simplify the comparison, the human control input is
onstructed as a PD controller as 𝑈ℎ = −𝐾𝑝𝑋 −𝐾𝑑�̇�, in which 𝐾𝑝 = 3,
𝑑 = 0.5 are the proportional and derivative gains inspired by [22,51].

The simulator is implemented in MATLAB R23b Simulink on a PC with
an Intel Core i3-12100F CPU (@3.3 GHz) and 24 GB RAM. The solver
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Table 2
Controller performance comparison results.

Method 𝜙 RMSE 𝜃 RMSE 𝜓 RMSE �̇� RMSE �̇� RMSE �̇� RMSE Att RMSE Ang RMSE All RMSE

Proposed 26.6856% ↓ 48.5170% ↓ 19.0512% ↓ 24.5528% ↓ 15.0650% ↓ 7.0001% 31.5294% ↓ 15.5393% ↓ 19.0512% ↓

ADP [30] 42.8268% 43.9461% 43.7003% 69.9931% 54.8944% 6.9509% ↓ 56.7201% 51.0785% 20.6817%
MDA [6] 36.7381% 26.3966% 28.6679% 41.8387% 30.2750% 7.0761% 36.9340% 53.6926% 19.5877%

Method 𝑇1 state cost 𝑇2 state cost state cost 𝑇1 ctrl cost 𝑇2 ctrl cost Ctrl cost 𝑇1 cost 𝑇2 cost All cost

Proposed 1.4209×104 ↓ 2.8020×104 ↓ 4.2229×104 ↓ 7.4963×104 ↓ 3.5239×103 7.8487×104 ↓ 8.9172×104 ↓ 3.1544×104 ↓ 1.2072×105 ↓

ADP [30] 2.7739×104 7.4434×104 1.0217×105 1.9162×105 2.9818×103 ↓ 1.9460×105 2.1936×105 7.7416×104 2.9678×105
MDA [6] 2.5872×105 4.4234×104 6.2952×104 2.4000×105 1.7915×104 2.5791×105 2.5872×105 6.2149×104 3.2087×105
Fig. 4. Simulation results of the UAV system and the controller performance comparison.
of the ODEs is the Fourth-order Runge–Kutta method with a fixed step
size of 𝑇 = 0.001 s. The simulation time is set as 𝑡end = 10 s. The basis
functions of the critic NNs are designed as:

𝜑𝑐 = 𝜑𝑎 =
[

𝑋(1)2, 𝑋(1)𝑋(4), 𝑋(4)2, 𝑋(2)2, 𝑋(2)𝑋(5),

𝑋(5)2, 𝑋(3)2, 𝑋(3)𝑋(6), 𝑋(6)2
]

The parameters of the initial condition, UAV system, and update law
re shown in Table 1. A sinusoidal desired trajectory is set as: 𝑋𝑑 =
𝐴𝜙 sin(𝜔𝑡), 𝐴𝜃 cos(𝜔𝑡), 𝐴𝜓 sin(𝜔𝑡)

]⊤, where 𝐴𝜙 = 𝐴𝜃 = 𝐴𝜓 = 0.1, 𝜔 = 0.5.
o evaluate the performance of proposed method, three methods are

compared in simulations:

• Proposed: Proposed data-driven optimal shared control.
• ADP: Adaptive dynamic programming method in [30].
• MDA: Model-based shared control method in [6].

According to the proposed method, the dynamics model of the UAV
system is predicted and linearized as 𝐴 and 𝐵 by (12). The predicted
inear system dynamics matrix 𝐴 and 𝐵 are computed. With predicted
inear system dynamics matrix 𝐴 and 𝐵, the estimated drift dynamics
atrix 𝐹 and control input matrix �̂� could be computed by (13). The

hared control input is calculated by (27) and applied to the UAV
system.

Simulation results
The simulation results are shown in Figs. 4–6. The state of the

UAV is shown in Figs. 4(a)–4(b), which indicates that the proposed
 w

7 
Fig. 5. Simulation results of actor-critic NNs weights.

method tracks desired trajectory precisely and responds quickly. The
attitude tracking error and angular velocity tracking error are shown
in Figs. 4(c)–4(d), in which the proposed method achieves smaller
tracking errors and better tracking performance. The cost comparison
results are shown in Fig. 4(e), where the proposed method achieves
the lowest cost of control input, state, and overall cost. In Fig. 4(f),
the mean squared error (MSE) of the tracking control process is shown,

hich indicates that the proposed method has a smaller MSE and better
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Fig. 6. RMSE of the UAV system states.

tracking performance. The weights of the actor-critic NNs are shown
in Fig. 5, the weights are updated online and converge to the stable
values. The performance comparison results are shown in Table 2,
which compares the cost and root mean square error (RMSE) of the
attitude and angular velocity. The results indicate that the proposed
method achieves the best performance in terms of cost and RMSE.
The detailed RMSE of the UAV system is shown in Fig. 6. It shows
that the proposed method has the smallest RMSE and best tracking
performance.

5.2. Example 2: Human-in-the-loop simulations

Experimental setup
In this subsection, human-in-the-loop UAV simulations are con-

ducted to further verify the effectiveness of the proposed data-driven
optimal shared control scheme. To give more straightforward feedback
on the UAV system’s performance, we choose to control the UAV to fly
through two circles in the simulation. The dynamics of the UAV system
is simplified and transferred as a position control system based on the
original dynamics system (5). Assume that the attitude angles are small
enough that sin𝜙 ≈ 𝜙, cos𝜙 ≈ 1, sin 𝜃 ≈ 𝜃, cos 𝜃 ≈ 1. The simplified
dynamics system is given by:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̇�i = 𝑣i, 𝑖 ∈ {𝑥, 𝑦, 𝑧}
�̇�x = −𝑔(𝜙𝑑 sin𝜓 + 𝜃𝑑 cos𝜓),

�̇�y = −𝑔(−𝜙𝑑 cos𝜓 + 𝜃𝑑 sin𝜓),

�̇�z = 𝑔 − 𝑓∕𝑚,

(37)

where 𝑝i is the position of the UAV in the 𝑖-axis, 𝑣i is the velocity of
the UAV in the 𝑖-axis, 𝑝 = [𝑝𝑥, 𝑝𝑦, 𝑝𝑧]⊤, 𝑣 = [𝑣𝑥, 𝑣𝑦, 𝑣𝑧]⊤. 𝜣 = [𝜙, 𝜃]⊤ is
the desired attitude of the UAV, take 𝑈ℎ = 𝜣 as the input signals of
a human operator. Consider the desired trajectory 𝑝𝑑 = [𝑝𝑥𝑑 , 𝑝𝑦𝑑 , 𝑝𝑧𝑑 ]⊤
generated from �̇�𝑑 = [𝑣𝑥𝑑 , 𝑣𝑦𝑑 , 𝑣𝑧𝑑 ]⊤. The state of UAV tracking dynam-
ics for example 2 is defined as 𝑋 = [𝑝−𝑝𝑑 , 𝑣−𝑣𝑑 ]⊤. For the cooperation
of the human operator and the UAV, we choose the Rflysim simulation
environment [52] for the human-in-the-loop (HiTL) simulation. The
experiment setup is shown in Fig. 7, in which the human operator
observes the UAV’s attitude and position on the screen, and controls
the UAV by two joysticks of Logitech F310 gamepad. The setup of the
experiment is shown in Fig. 7(a), where the human operator observes
the UAV’s state on the screen through the interface of the simulation
environment. The left joystick is used to control the roll angle of the
UAV as shown in Fig. 7(b), and the right joystick is used to control the
pitch and yaw angles of the UAV as shown in Fig. 7(c). Joysticks have a
resolution of 1∕256 and a value range of [−0.5, 0.5]. The detailed scheme
of example 2 is shown in Fig. 8, in which the controller is calculated
by Eq. (26), and the shared control input is calculated by Eq. (27). It
should be noted that although this example is conducted in simulation,
the proposed method can be easily extended to the real-world scenario
by rapid prototyping validation capabilities of Rflysim [52].

In the HiTL simulation, two circles are set as the targets for the UAV
to fly through. The center of the circles are [250 m, 75 m, 100 m] and
[500 m,−75 m, 100 m] with a radius of 10 m, UAV is set to fly through
the two circles in sequential order 𝑇 = 30 s, 𝑇 = 60 s. Initial weights
𝑐1 𝑐2
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of the actor-critic NNs are set as 𝑊𝑐0 = 𝑊𝑎0 = 2 × 𝟏4. The state penalty
matrix is set as 𝑄 = diag ([10000, 10000, 10000, 0.1, 0.1, 0.1]), the control
penalty matrix is set as 𝑅 = 10000 × 𝟏3. The history stack size is set
as 𝑁 = 30. The learning rate is set as 𝛼 = 0.001. The simulator is
implemented in MATLAB R23b Simulink and Rflysim on the same PC
as in example 1. The simulation time is set as 𝑡end = 60 s. The solver
of the ODEs is the Fourth-order Runge–Kutta method with a fixed step
size of 𝑇 = 0.001 s. The basis of NNs is selected as

𝜑𝑐 = 𝜑𝑎 =
[

𝑋(1)𝑋(4), 𝑋(2)𝑋(5), 𝑋(1)3𝑋(4), 𝑋(2)3𝑋(5)
]

(38)

To illustrate the performance of the proposed method in the HiTL
simulation, two methods are compared in the simulation:

• Proposed: Proposed data-driven optimal shared control.
• MDA: Model-based shared control method in [6,53].
• Human operator: Human operator direct control.

Note that the human operator in the ‘Proposed’ and ‘MDA’ methods is
the same person. The intention and interaction of the human operator
are the same in the simulation.

Simulation results
The simulation results are shown in Figs. 9–14. The trajectories of

the UAV in the HiTL simulation are shown in Fig. 9, where three meth-
ods are compared, all three methods can make the UAV fly through
the two circles, but the proposed method achieves the shortest tracking
trajectory. The tracking performance of the UAV is shown in Fig. 10,
in which the proposed method achieves the smallest tracking error and
best tracking performance. The control inputs of the human operator
and the shared control are shown in Fig. 11, which shows that the
shared control input is blended by the human operator’s input and
the optimal control input. The shared control input is not only much
smoother than the human operator’s input, but also blends the human
operator’s intention and the automation’s intention at the same time
effectively. The detailed state of the UAV is shown in Fig. 12, where
the attitude and angular velocity of the UAV are shown. The cost
comparison results are shown in Fig. 13, where the proposed method
achieves the lowest cost of control inputs and overall cost. The weights
of the actor-critic NNs are shown in Fig. 14, which shows that the
weights are updated online and converge to stable values.

To evaluate the performance of the proposed method in the HiTL
simulation, four quantitative metrics are introduced to evaluate the
performance of different approaches as follows:

1. Position smoothness index (PSI)

PSI = ∫𝑇
‖

‖

‖

𝑑3𝑝∕𝑑 𝜏3‖‖
‖

2
𝑑 𝜏 (39)

which is mean-square third-order derivative of position.
2. Attitude smoothness index (ASI)

ASI = ∫𝑇
‖

‖

‖

𝑑3𝛩∕𝑑 𝜏3‖‖
‖

2
𝑑 𝜏 (40)

which is mean-square third-order derivative of attitude.
3. Accumulated tracking error (ATE)

ATE = ∫𝑇
‖

‖

𝑝 − 𝑝𝑑‖‖
2 𝑑 𝜏 (41)

where 𝑝 is the position of the UAV and 𝑝𝑑 is the desired position
of the UAV.

4. Accumulated Control energy

ACE = ∫𝑇
‖𝑈‖

2 𝑑 𝜏 (42)

where 𝑈 is the control input imposed on the UAV system.

The performance comparison results are shown in Table 3. The
results indicate that the proposed method achieves the best perfor-
mance in terms of PSI, ATE, and CE. Note that the ASI of the proposed
method is not the best, which is because the human operator’s input is
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Fig. 7. (a) Scenario of experiment. (b) Left joystick’s input functions. (c) Right joystick’s input functions.
Fig. 8. Scheme of the HiTL simulation example 2.
Fig. 9. Trajectories of the UAV system in the HiTL simulation.
Fig. 10. Tracking error of the UAV.
9 
Fig. 11. Input of human operator and shared control.
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Fig. 12. State of the UAV.

Fig. 13. Cost comparison results of the HiTL simulation.

Fig. 14. Weights of the actor-critic NNs.
Table 3
Performance comparison results of the HiTL simulation.

Method PSI ASI ATE ACE

Proposed 57.7396 ↓ 39.1561 514.7209 ↓ 40.7349 ↓

ADP only 66.9467 5.5052 ↓ 945.9328 46.2972
Human only 98.5432 127.5812 918.9737 47.0130

very vibrating and the shared control input is blended by the human
operator’s input and the optimal control input. However, compared
with the case of ‘human only’, ASI of the proposed method is much
better, which indicates that the shared control mechanism can smooth
the human operator’s input effectively.
10 
Table 4
Proportion of cooperation in the HiTL simulation.

Index Roll Control Pitch Control All Control

Cooperative time (%) 54.04 80.38 90.05
Cost of Human Control 7.52 × 103 1.50 × 104 2.25 × 104
Cost of Shared Control 2.89 × 103 1.16 × 104 1.45 × 104
Control Cost Saving (%) 61.52 22.68 35.65

The proportion of cooperation in the HiTL simulation is shown in
Table 4, which shows that the proposed method can save the cost of hu-
man control effectively. The simulation results show that the proposed
data-driven optimal shared control scheme can achieve better tracking
performance and HiTL control performance for the UAV system.

6. Conclusion

In this paper, a data-driven optimal shared control scheme is pro-
posed for UAV control. The Koopman-based RL algorithm is designed
to approximate the optimal control input without the knowledge of
the system dynamics. A novel shared control mechanism is designed
to blend the human control input and the optimal control input, in
which the intention of the human operator is judged and integrated into
the shared control input smoothly and effectively. The value function
and optimal control input are approximated online utilizing actor-
critic NNs, which exploits and integrates human operator experience
from collected maneuvers data. The stability analysis of the closed-loop
system is presented based on the Lyapunov stability theory. Numerical
and HiTL simulation results demonstrate that the proposed method
achieves more effective and smooth tracking performance for UAV
control. The future work will concentrate on the real-world practical
application of the proposed method, such as the implementation of the
proposed method on a real pilot-UAV system.
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